Fresh Water Controller SFWC

Installation and operating instructions

Read carefully before installation, commissioning and operation

Contents

4.4.2. - Circ. Tmin. 4.4.3. - Circ. hysteresis

4.4.4. - Circ. maximum Flow rate

A Safety Instructions	3	4.4.5 Circulation period	22
A.1 EC declaration of conformity	3	4.4.6 Tap support	22
A.2 General instructions	3	4.4.7 Min storage temp	22
A.3 Explanation of symbols	3	4.4.8 Tap support calibration	22
A.4 Changes to the unit	4	4.10 Comfort	22
A.5 Warranty and liability	4		
		5 Protections / Protective functions	23
B Description of Controller	5	5.1 Antilegionella	23
B.1 Specifications	5	5.2 Limescale Protection	24
B.2 Temperature resistance table	5	5.3 Discharge Protection	24
B.3 About the controller	6	5.4 Seizing Protection	24
B.4 Scope of supply:	6	3	
B.5 Disposal and pollutants	6	6 Special Functions	25
B.6 Hydraulic variants	7	6.1 Pump menu	25
,		6.1.1 Type of pump	25
C Installation	8	6.1.2 Pump	25
C.1 Wall installation	<u> </u>	6.1.3 Output Signal	25
C.2 Electrical connection	9	6.1.4 0-10V off / PWM off	25
C.1 Installing the temperature sensors	11	6.1.5 0-10V on / PWM on	26
C.1 Installing the temperature sensors	- ' '		
D Terminal connection diagrams	12	6.1.6 0-10V Max / PWM Max	26
D Terminal connection diagrams	12	6.1.7 Show signal	26
C Omenation	40	6.2 Speed control R1 / R2	27
E Operation	<u>13</u>	6.2.1 Max. speed	27
E.1 Display and input	13	6.2.2 Min. speed	27
E.2 Menu sequence and menu structure	14	6.3 Relay functions	27
		6.3.1 Always on	27
F Parametrisation	<u>15</u>	6.3.2 Circulation	27
F.1 Commissioning help	15	6.3.3 Parallel operation V1	27
F.2 Free commissioning	15	6.4 Sensor calibration	28
F.3 Calibration	16	6.5 Commissioning	28
		6.6 Factory settings	28
1 Measurements	<u>17</u>	6.7 Time & Date	28
		6.8 Daylight saving time	29
2 Statistics	18	6.9 Sleep mode	29
2.1 Operating hours	18	6.10 Temperature unit	29
2.2 Heat output	18	·	
2.3 Graphic overview	18	7 Menu Lock	30
2.4 Error messages	18	7.1 Menu lock	30
2.5 Reset / clear	18	7.2 Expert mode	30
3 Operating Mode	19	8 Service Values	31
3.1 Automatic	19		
3.2 Manual	19	9 Language	32
3.3 Off	19	o. Languago	-
0.0.	10	Z.1 Malfunctions with Error Messages	33
4 Settings	20	Z.2 Replacing the Fuse	34
4.1 Tset	20	Z.3. Maintenance	35
4.2 Tmax	20	£.J. Mantenance	
4.3 VFS -Type	20		
4.4 Circulation	21		
4.4.1 Circulation	21 21		
4.4.2 Circ. Tmin.	∠ I		

21

21

Safety Instructions

A.1. - EC declaration of conformity

By affixing the CE mark to the unit the manufacturer declares that the SFWC conforms to the following relevant safety regulations:

- EC low voltage directive 2006/95/EC
- EC electromagnetic compatibility directive 2004/108/EC

Conformity has been verified and the corresponding documentation and the EC declaration of conformity are kept on file by the manufacturer.

A.2. - General instructions

It is essential that you read this!

These installation and operating instructions contain basic instructions and important information regarding safety, installation, commissioning, maintenance and the optimal use of the unit. Therefore these instructions must be read completely and understood by the installation technician/ specialist and by the system user before installation, commissioning and operation of the unit. The valid accident prevention regulations, VDE regulations, the regulations of the local power utility, the applicable DIN-EN standards and the installation and operating instruction of the additional system components must also be observed. The controller does not under any circumstances replace any safety devices to be provided by the customer! Installation, electrical connection, commissioning and maintenance of the unit may only be carried out by specialists who possess the appropriate training.

For the user: Make sure that the specialist gives you detailed information on the function and operation of the controller. Always keep these instructions in the vicinity of the controller.

A.3. - Explanation of symbols

Failure to observe these instructions can result in danger to life from electric voltage.

Failure to observe these instructions can result in serious damage to health such as scalding, or even life-threatening injuries.

Failure to observe these instructions can result in destruction of the unit or the system, or damage to the environment.

Information which is especially important for the function and optimal use of the unit and the system.

Safety instructions

A.4. - Changes to the unit

Changes to the unit can compromise the safety and function of the unit or the entire system.

- Changes, additions to or conversion of the unit are not permitted without the written permission from the manufacturer
- It is likewise forbidden to install additional components that have not been tested together with the unit
- If it becomes clear that safe operation of the unit is no longer possible, for example because of damage to the housing, then turn the controller off immediately
- Any parts of the unit or accessories that are not in perfect condition must be exchanged immediately
- Use only original spare parts and accessories from the manufacturer.
- Markings made on the unit at the factory must not be altered, removed or made illegible
- Only the settings actually described in these instructions may be made on the controller

A.5. - Warranty and liability

The controller has been manufactured and tested with regard to high quality and safety requirements. The unit is subject to the statutory guarantee period of two years from the date of sale.

The warranty and liability shall not include, however, any injury to persons or material damage that is attributable to one or more of the following causes:

- Failure to observe these installation and operating instructions
- Improper installation, commissioning, maintenance and operation
- Improperly executed repairs
- Unauthorised structural changes to the unit
- Installation of additional components that have not been tested together with the unit
- Any damage resulting from continued use of the unit despite an obvious defect
- Failure to use original spare parts and accessories
- Use of the device for other than its intended purpose
- Operation above or below the limit values listed in the specifications
- Force majeure

Description of controller

B.1. - Specifications

Electrical specifications:

Mains voltage 230VAC +/-10%

Mains frequency 50 - 60Hz Power consumption 1.5W - 2.0W

Internal fuse 2A slow blow 250V

Protection category IP40
Protection class II
Overvoltage Category II
Degree of Pollution Category II

mechanisches Relais 460VA für AC1 / 460W für AC3	1
0-10V output, tolerance 10%, 10 k Ω load or PWM output freq. 1 kHz, level 10 V	1
PT1000 sensor input measuring range -40°C to 300°C	2

Permissible cable length of sensors and appliances:

Sensor S1 and S2 <10m PWM / 0...10V <3m mechanical relay <10m VFS <3m

Permissible ambient conditions:

Ambient temperature

for controller operation 0°C...40°C for transport/storage 0°C...60°C

Air humidity

for controller operation max. 85% rel. humidity at 25°C

for transport/storage no moisture condensation permiddled

Other specifications and dimensions

Housing design 2-part, ABS plastic

Installation methods Wall installation, optionally panel installation

Overall dimensions 115mm x 86mm x 45mm Aperture dimensions 108mm x 82mm x 25.2mm

Display Fully graphical display, 128 x 128 dots

Operation 4 entry keys

B.2. - Temperature resistance table for Pt1000 sensors

°C	0	10	20	30	40	50	60	70	80	90	100
Ω	1000	1039	1077	1116	1155	1194	1232	1270	1308	1347	1385

Description of controller

B.3. - About the controller

The Fresh water controller SFWC facilitates efficient use and function control through of your fresh water system. Tap water temperature is regulated fast and precise. The device is impressive most of all for its functionality and simple, almost self-explanatory operation. For each step in the input process the individual entry keys are assigned to appropriate functions and explained. The controller menu contains headwords for the measured values and settings, as well as help texts or clearly-structured graphics.

Important characteristics of the SFWC:

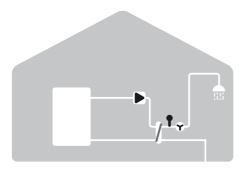
- Depiction of graphics and texts in a lighted display
- Simple viewing of the current measurement values
- Analysis and monitoring of the system by means of statistical graphics, etc.
- Extensive setting menus with explanations
- Menu block can be activated to prevent unintentional setting changes
- Resetting to previously selected values or factory settings

B.4. - Scope of supply:

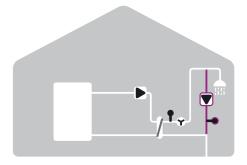
- Fresh water controller SFWC
- replacement fuse 2A slow-blow
- Installation and operating instructions SFWC
 Optionally contained depending on design/order:
- Pt1000 temperature sensor and Vortex Flow Sensor

B.5. - Disposal and pollutants

The unit conforms to the European RoHS directive 2011/65/EU for the restriction of the use of certain hazardous substances in electrical and electronic equipment.

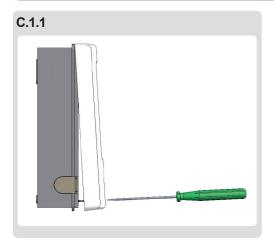

The unit must not under any circumstances be disposed of with ordinary household refuse. Dispose of the unit only at appropriate collection points or ship it back to the seller or manufacturer.

Description of controller

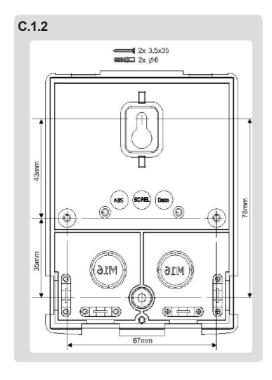

B.6. - Hydraulic variants

The following illustrations should be viewed only as schematic diagrams showing the respective hydraulic systems, and do not claim to be complete. The controller does not replace safety devices under any circumstances. Depending on the specific application, additional system components and safety components may be mandatory, such as check valves, non-return valves, safety temperature limiters, scalding protectors, etc., and must therefore be provided.

Basic scheme



Additional function circulation


C.1 Wall installation

Install the controller only in dry areas and under the ambient conditions described under 2.1 "Specifications". Carry out the following steps:

- 1.Unscrew cover screw completely
- 2.Carefully pull upper part of housing from lower part.
- 3.Set upper part of housing aside, being sure not to touch the electronics when doing so.
- 4. Hold the lower part of the housing (C.1.2) up to the selected position and mark the 2 mounting holes. Make sure that the wall surface is as even as possible so that the housing does not become distorted when it is screwed on.
- 5. Using a drill and size 6 bit, drill 2 holes at the points marked on the wall and push in the plugs. Also possible is the installation with 4 drill holes.
- 6. Insert the upper screw and screw it in slightly.
- 7. Fit the upper part of the housing and insert the other screws.
- 8. Align the housing and tighten the screws.

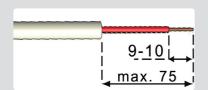
C.2 Electrical connection

Before working on the unit, switch off the power supply and secure it against being switched on again! Check for the absence of power! Electrical connections may only be made by a specialist and in compliance with the applicable regulations.

Do not use the controller if the housing shows visible damage.

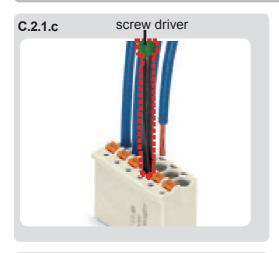
Low-voltage cables such as temperature sensor cables must be routed separately from mains voltage cables. Feed temperature sensor cables only into the left-hand side of the unit, and mains voltage cables only into the right-hand side.

The customer must provide an all-pole disconnecting device, e.g. a heating emergency switch.



The cables being connected to the unit must not be stripped by more than 55mm, and the cable jacket must reach into the housing just to the other side of the strain relief.

We recommend the use of flexible cables to ease the installation in the clamp room.


C.2.1

C.2.1.a

- 1.Select necessary program/hydraulics (see section D)
- Strip cables by 55mm max., insert, fit the strain relief devices, strip the last 9-10 mm of the wires. (Fig. C.2.1)
- Open controller as described under fig.
 C.1.1, insert cables and install strain reliefs
- 4.Install PE terminal block (see fig. 2.1.a).

- 5. Connect the female connector block 's clamp connections as described in the terminal connection plans. When using stranded cables, use a small screw driver and push the orange buttons while inserting (see fig. C.2.1.c). When using solid cable or end splice, just push the cables in (see fig. C.2.1.d).
- 6. Plug Female connectors into onboard headers.
- Hinge the upper part of the casing on the top of the lower part and close the casing gently.
- 8. Fasten with screw.
- 9. Switch on mains voltage and place controller in operation.

To remove the female connector block from the header, carefully bend the latch on the header.

Caution: The latch breaks easily.

C.1. - Installing the temperature sensors

The controller operates with Pt1000 temperature sensors which are accurate to the degree, thus ensuring optimal control of system functions.

Position the sensor precisely in the area to be measured!

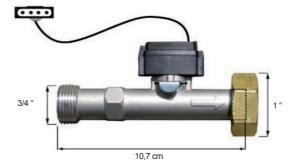
It is recommended that at least 20 cm of the sensor cable at the sensor are installed inside the pipe insulation.

Connect the VFS sensors with the matching jacks.

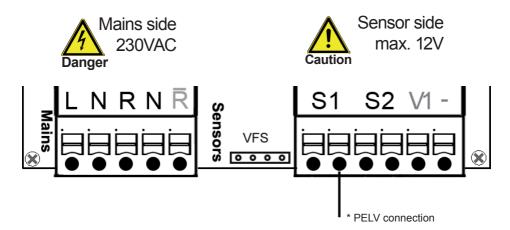
Sensor cables for PT1000 can be extended to a maximum of 10m using a cable with a cross-section of at least 0.75mm².

Sensor cables for the VFS sensor can be extended to 3m.

Make sure that there is no contact resistance!



The temperature sensor cables must be routed separately from mains voltage cables, and must not, for example, be routed in the same cable duct!



Controller and VFS sensor have to have the same ground potential. The VFS sensor uses a functional earth connector (PELV). The PE-connector of the controller has to be connected to the pipe system near the sensor.

Example: Connections and dimensions of the Vortex Flow Sensors VFS2-40

D. - Terminal connection diagrams

Mains voltages 230VAC 50-60Hz

Connection in the right-hand terminal compartment!

Terminal:	Connection for:
L	Mains phase conductor L
N	Mains neutral conductor N
R	Relay (normally open)
N	Mains neutral conductor N
R	Relay (normally closed)

Low voltage max. 12VAC/DC connection in the left-hand terminal compartment!

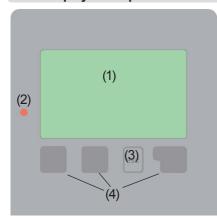
Terminal:	Connection for:
S1	Circulation (opt.)
S2	Storage (opt.)

V1 0-10V/PWM signal primary pump

0-10V/PWM signal

The polarity of the sensors is freely selectable.

The PE protective conductor must be connected to the PE metal terminal block!


Relay connection changes depending on the additional functions selected. VFS sensor has to be connected to the socket on the circuit board.

*Bridge of the sensor mass to PE protective conductor required (PELV connection).

Operation

E.1. - Display and input

Examples of display symbols:

۹

Pump

(rotates in operation)

(3)

Flow meter

171

heat exchanger

_

Temperature sensor

/ \wedge

Warning/error message

i

New information available

The display (1), with its extensive text and graphics mode, is almost selfexplanatory, allowing easy operation of the controller.

The LED (2) lights up green when a relay is switched on.

The LED (2) lights up red when operating mode "Off" is set.

The LED (2) flashes slowly red in the operating mode "Manual".

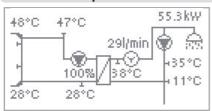
The LED (2) flashes quickly red when an error is present.

Entries are made using four keys (3+4), which are assigned to different functions depending on the situation. The "esc" key (3) is used to cancel an entry or to exit a menu. If applicable there will be a request for confirmation as to whether the changes which have been made should be saved. The function of each of the other three keys (4) is shown in the display line directly above the keys; the right-hand key is generally has a confirmation and selection function.

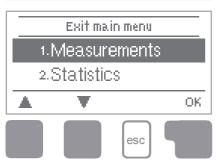
Examples of key functions:

+/- = enlarge/shrink values

▼/▲ = scroll menu down/up


yes/no = approve/reject
Info = additional information

Back = to previous screen
ok = confirm selection


Confirm = confirm setting

Operation

E.2. - Menu sequence and menu structure

The <u>graphics or overview mode</u> appears when no key has been press for 2 minutes, or when the main menu is exited by pressing "esc".

Pressing a key in graphics or overview mode takes you directly to the <u>main menu</u>. The following menu items are then available for selection there:

1. Measurements

Current temperature values with explanations

2. Statistics

Function control of the system with operating hours, etc.

3. Operating mode

Automatic mode, manual mode or switch unit off

4. Settings

Set parameters needed for normal operation

5. Protective functions

Functions to prevent damage to system and user.

6. Special functions

Program selection, clock, etc.

7. Menu block

Against unintentional setting changes at critical points

8. Service Values

For diagnosis in the event of an error

9. Language

Language selection

Parametrisation

F.1. - Commissioning help

The first time the controller is turned on and after the language and time are set, a query appears as to whether you want to parametrise the controller using the commissioning help or not. The commissioning help can also be terminated or called up again at any time in the special functions menu. The commissioning help guides you through the necessary basic settings in the correct order, and provides brief descriptions of each parameter in the display. Pressing the "esc" key takes you back to the previous value so you can

look at the selected setting again or adjust it if desired. Pressing the "esc" more than once takes you back step by step to the selection mode, thus cancelling the commissioning help. Finally, menu 3.2 under operating mode "Manual" should be used to test the switch outputs with the consumers connected, and to check the sensor values for plausibility. Then switch on automatic mode.

Observe the explanations for the the individual parameters on the following pages, and check whether further settings are necessary for your application.

F.2. - Free commissioning

If you decide not to use the commissioning help, you should make the necessary settings in the following sequence:

- Menu 6. Special functions clock, Additional functions
- Menu 4. Settings, complete

Finally, menu 3.2 under operating mode "Manual" should be used to test the switch outputs with the consumers connected, and to check the sensor values for plausibility. Then switch on automatic mode.

Observe the explanations for the the individual parameters on the following pages, and check whether further settings are necessary for your application.

Parametrisation

F.3. - Calibration

When the tap support is activated (during commissioning or in the menu "Circulation"), a calibration process is started after the commissioning. To ensure the correct operation, calibration is also scheduled to start on every Sunday at 3:00 AM.

During commissioning, the calibration must not be interrupted.

If the weekly calibration process is not successful after 10 minutes, the process is cancelled and the controller uses the former calibration values.

Calibration

During the callibration process a text is shown that the flow rate is measured and no tapping is allowed.

After confirmation the circulation pump is switched off and the controller is waiting until the flow rate has dropped to 0 L/min. Afterwards only the circulation pump is switched on and after another 60 seconds the flow rate is measured. The display shows a "Please wait" sign.

After another minute, the flow rate is measured again, and the two flow rates are compared. If the results are identical (+- 1L/min), the result is saved.

If not, the process is started over until either the results match or 10 minutes have passed and the calibration is cancelled and the former values are used.

Measurement values

1. - Measurement values

esc

The menu "1. Measurement values" serves to display the currently measured temperatures.

The menu is closed by pressing "esc" or selecting "Exit measurement values".

If "Error" appears on the display instead of the measurement value, then there may be a defective or incorrect temperature sensor.

If the cables are too long or the sensors are not placed optimally, the result may be small deviations in the measurement values. In this case the display values can be compensated for by making entries on the controller. Follow the instructions under 6.4

What measurement values are displayed depends on the selected program, the connected sensors and the specific device design.

Statistics

2. - Statistics

The menu "2. Statistics" is used for function control and long-term monitoring of the system. The submenus described under 7.1-7.6 are available.

The menu is closed by pressing "esc" or selecting "Exit statistics".

For system data statistics it is essential for the time to be set accurately on the controller. Please note that the clock continues to run for about 24 hours if the mains voltage is interrupted, and after that has to be reset. Improper operation or an incorrect time may result in data being cleared, recorded incorrectly or overwritten. The manufacturer accepts no liability for the recorded data!

2.1. - Operating hours

Display of operating hours of the relays connected to the controller.

2.2. - Heat output

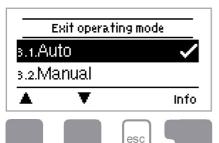
Display of the heat output of the system in KWh

Resulting data is only approximate value for function control!

2.3. - Graphic overview

This provides a clearly-organised display of the data listed under 2.1 - 2.2 as a bar graph. Various time ranges are available for comparison. The two left-hand keys can be used to page through the data.

2.4. - Error messages


Display of the last 15 errors occurring in the system with indication of date and time.

2.5. - Reset / clear

Resetting and deleting the individual analyses. The function "All statistics" clears all analyses but not the error messages.

Operating modes

3. - Operating mode

In menu "3. Operating modes" the controller can either be placed in automatic mode, switched off, or placed in a manual operating mode.

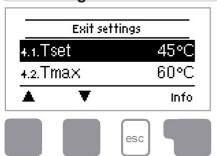
The menu is closed by pressing "esc" or selecting "Exit operating modes".

3.1. - Automatic

Automatic mode is the normal operating mode of the controller. Only automatic mode provides proper controller function taking into account the current temperatures and the parameters that have been set! After an interruption of the mains voltage the controller automatically returns to the last operating mode selected!

3.2. - Manual

When operating mode "Manual" is activated, the current temperatures and the selected parameters are no longer considered. There is a danger of scalding or serious damage to the system. The operating mode "Manual" may only be used by specialists for brief function tests or during commissioning! The relay and thus the connected consumer are switched on and off by pressing a key, with no regard to the current temperatures and the parameters which have been set. The measured temperatures are also shown to provide an overview and function control.


3.3. - Off

When the operating mode "Off" is activated, all controller functions are switched off. The measured temperatures are still displayed to provide an overview.

Settings

4. - Settings

The necessary basic settings required for the control function are made in menu "4. Settings".

There is a brief description of each adjustable parameter shown in the Display. Further the setting range and in brackets the default setting is displayed.

This does not under any circumstances replace the safety facilities to be provided by the customer!

The menu is closed by pressing "esc" or selecting "Exit settings".

4.1. - Tset

Setpoint at VFS sensor

The controller SFWC attempts to reach and maintain a constant temperature in the circulation by controlling the speed of the hot water pump.

4.2. - Tmax

Maximum tap water temperature at VFS

Maximum allowable temperature at VFS. If Tmax is exceeded, the pump is switched off. If the temperature drops below Tmax the pump is switched on again.

Temperature values which are set too high can lead to scalding or damage to the system. Scalding protection must be provided by the customer!

4.3. - VFS -Type

Set the type of Vortex Flow Sensors

In this menu the type of Vortex Flow Sensor can be set.

Settings

4.4. - Circulation

Circulation settings are only availabe when the circulation function was selected for relay 1 in special functions.

4.4.1. - Circulation

Mode of circulation

When the mode "Request" is active, the circulation pump is switched on after a corresponding tapping of water has occured and stays on until the circulation target temperature (Circ Tmin + hysteresis) is reached at the circulation sensor.

In mode "**Periods**" the circulation pump is enabled in the set periods and the set circulation minimum temperature is undershot and stays on until the circulation target temperature (Circ Tmin + hysteresis) is reached at the circulation sensor.

Request+Time: The circulation pump is switched on in the enabled periods and the set circulation minimum temperature is undershot, or when water is tapped. Circulation stays on till the circulation target temperature (Circ Tmin + hysteresis) is reached at the circulatiopn sensor.

Always on: Circulation pump is switched on in set periods.

4.4.2. - Circ. Tmin.

Minimum temperature at sensor S2

If the temperature drops below Circ.Tmin and the circulation is enabled (see $_{\rm *}4.4.5.$ -Circulation period"), the circulation pump is started.

4.4.3. - Circ. hysteresis

Switch-off hysteresis of the circulation pump

If the temperature exceeds TminS2 by this value, the circulation pump is switched off.

4.4.4. - Circ. maximum Flow rate

Maximum flow rate of the circulation pump

If the flow rate measured at sensor 6 exceeds this value (because water is being drained from the system) the circulation pump is switched off.

This Value is set during the calibration process.

Settings

4.4.5. - Circulation period

Period where the circulation pump is enabled

Set the operation times of the circulation pump. 3 different periods can be set for every weekday, which can also be copied to other days.

In periods not defined circulation is inactive.

The set periods are only used in the circulation mode "Periods".

4.4.6. - Tap support

To ensure a constant temperature even with small amount of tap water, the circulation pump can be used as support pump.

Not only does the circulation pump switch on under normal conditions, but also when a small tapping occurs.

When a storage sensor is connected, tap support is only switched on when the Min storage Temp is reached at the storage sensor.

4.4.7. - Min storage temp

Tap support is deactivated when the storage temperature drops below "Min storage temp".

4.4.8. - Tap support calibration

See "F3. Calibration" on page 16.

4.10. - Comfort

If this function is activated, the heat exchanger will rinse for 5 seconds every 15 minutes, so that hot water is available as soon as possible.

Protective functions

5. - Protections / Protective functions

Menu "5. - Protections / Protective functions" can be used to activate and set various protective functions.

This does not under any circumstances replace the safety facilities to be provided by the customer!

The menu is closed by pressing "esc" or selecting "Exit".

5.1. - Antilegionella

With the AL-function activated, the SFWC makes it possible to heat the storage in selectable intervals, (AL interval) for the set residence time (AL resid. time), starting at the set time (AL start time) until the temperature AL Tset is reached. The temperature measured at S5 has a reference of AL Tset +5°. For the time the AL function is active, Tmax is set to AL Tset +10° to prevent system shutdown due to high temperature.

Only when a temperature of at least "AL Tset"-5°C is reached at the Hot water sensor and, if present, at the circulation sensor for the time set in "Al resid. time", the AL function is regarded as succeful. This is displayed as "Last AL heat.". If AL is unsuccessful after 2 hours, the attempt is canceled and will be started again the next day and an error message is displayed.

AL Function - Settings range: On, Off/ Default: Off

AL Tset

AL residence time

AL last heat

AL time

start manually -start a heat up immediately

During the anti-Legionella function the storage tank is heated up to high temperatures which can lead to scalding and damage to the system.

The user has to make sure that the antilegionella function was successful at the set intervals.

The AL function is switched off by default.

A message also containing the date is shown as soon as the AL function was completed successful. We recommend to set the "AL start time" in a period where little or no withdrawal of water takes place.

The user has to make sure that the storage temperature is AL Tset +2° when starting AL. If AL Tset+2° is not reached, the AL function is not started.

This anti-Legionella function does not provide complete protection against Legionella, because the controller is dependent on sufficient energy being fed in.

Protective functions

5.2. - Limescale Protection

To prevent the accumulation of limescale, the circulation pump can continue to rinse the heat exchanger after a tapping for at least 5 seconds or for longest 30 seconds or till the VFS sensor drops below Tset.

5.3. - Discharge Protection

If the temperature in the primary circuit is not always guaranteed to suffice, this function is used.

With this function activated:

When no storage sensor is connected:

If the setpoint temperature is not reached after 60 seconds, the currently measured temperature -3°C is used as new setpoint temperature. Once the pump in the primary circuit stops, the setpoint temperature is raised to the set Tset again.

When the storage sensor is connected

If the temperature at the storage sensor is smaller than Tset -5°C, the target temperature is lowered to the currently measured storage temperature -5°C.

In both cases "Circ Tmin" is lowered to the new setpoint temperature - Circ. hysteresis - 5°C, where "Circ Tmin is not lower than 0° C and not higher than the set Circ Tmin.

5.4. - Seizing protection

If the seizing protection is activated, the controller switches the output in question and the connected consumer on every day at 12:00 (setting "daily") or weekly on Sundays at 12:00 (setting "weekly") for 5 seconds in order to prevent the pump and/or the valve from sticking after an extended stationary period.

6. - Special functions

Menu "6. Special functions" is used to set basic items and expanded functions.

Other than the time all settings may only be made by a specialist.

The menu is closed by pressing "esc" or selecting "Exit special functions".

6.1. - Pump menu

This menu contains the settings for 0-10V or PWM pump.

The power supply of HE pumps with 0-10V / PWM signal input can be connected to the corresponding relay 1 (V1) by using the additional functions "duration on" or "parallel operation". Factory setting R1 = duration on

6.1.1. - Type of pump

The type of speed controlled pump must be entered here following the pumps data sheet.

0-10V: Speed control of e.g. High efficency pumps by 0-10V signal. **PWM**: Speed control of e.g. High efficency pumps by PWM signal.

6.1.2. - Pump

In this menu, preconfigured profiles for various pumps can be selected. Please note that individual settings are still possible even when a profile has been selected.

6.1.3. - Output Signal

This menu determines the type of pump used: Solar pumps perform at their highest power when the signal is also maxed, heating pump on the other hand are set to highest power wenn the control signal is at the lowest. Solar = normal, heating = Inverted.

6.1.4. - 0-10V off / PWM off

This voltage / signal is put out when the pump is switched off (Pumps that can detect cable break need a minimum voltage / signal).

6.1.5. - 0-10V on / PWM on

This voltage / signal is needed to turn the pump on at minimum speed.

6.1.6. - 0-10V Max / PWM Max

This determines the the output voltage / signal for the highest speed of the pump, that is used e.g. during purging or manual operation.

6.1.7. - Show signal

Displays the set signal in text and a graphical diagram.

6.2. - Speed control R1 / R2

The settings in this menu are used to limit the speed of connected pumps.

6.2.1. - max. speed

The maximum speed of the pump is specified here. During the setting the pump runs at the specified speed and the flow rate can be determined.

The indicated percentages are guide values that may vary to a greater or lesser extent depending on the system, pump and pump stage.

6.2.2. - min. speed

The minimum speed of the pump at relay R1 is specified here. During the setting the pump runs at the specified speed and the flow rate can be determined.

The indicated percentages are guide values that may vary to a greater or lesser extent depending on the system, pump and pump stage. 100% is the maximum possible voltage/frequency of the controller.

6.3. - Relay functions

The additional functions explained here can be assigned to relay 1. Pay special attention to the technical data of the relays ("B.1. - Specifications" on page 5).

6.3.1. - Always on

Relay is always switched on.

6.3.2. - Circulation

See "4.4.1. - Circulation" on page 21

6.3.3. - Parallel operation V1

Relay is switched together with V1. Used as power supply for the pump.

6.4. - Sensor calibration

Deviations in the temperature values displayed, for example due to cables which are to long or sensors which are not positioned optimally, can be compensated for manually here. The settings can be made for each individual sensor in steps of 0.5°C.

Settings are only necessary in special cases at the time of initial commissioning by the specialist. Incorrect measurement values can lead to unpredictable errors.

6.5. - Commissioning

Starting the commissioning help guides you in the correct order through the basic settings necessary for commissioning, and provides brief descriptions of each parameter in the display. Pressing the "esc" key takes you back to the previous value so you can look at the selected setting again or adjust it if desired. Pressing the "esc" more than once takes you back to the selection mode, thus cancelling the commissioning help. (see also 5.1)

May only be started by a specialist during commissioning! Observe the explanations for the the individual parameters in these instructions, and check whether further settings are necessary for your application.

6.6. - Factory settings

All of the settings that have been made can be reset, thus returning the controller to its delivery state.

The entire parametrisation, analyses, etc. of the controller will be lost irrevocably. The controller must then be commissioned once again.

6.7. - Time & Date

This menu is used to set the current time and date.

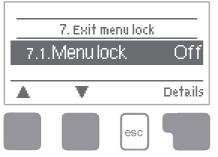
For proper functioning of the controller and statistics for the system data it is essential for the time to be set accurately on the controller. Please note that the clock continues to run for about 24 hours if the mains voltage is interrupted, and after that has to be reset.

6.8. - Daylight saving time

When this function is active, the controller's clock changes automatically to and from DST (DST, Daylight Savings Time).

6.9. - Sleep mode

When active, the displays backlight is switched off after 2 minutes of inactivity.


If a message is waiting, the backlight is not switched off.

6.10. - Temperature unit

This menu changes the displayed temperature unit.

Menu lock

7. - Menu lock

Menu "7. Menu lock" can be used to secure the controller against unintentional changing of the set values.

The menu is closed by pressing "esc" or selecting "Exit menu lock".

7.1. - Menu lock

The menus listed below remain completely accessible despite the menu lock being activated, and can be used to make adjustments if necessary:

- 1. Measurement values
- 2. Analysis
- 3. Display mode
- 8. Menu lock
- 9. Service values

To lock the other menus, select "Menu lock on".

To enable the menus again, select "Menu lock off".

7.2. - Expert mode

This menu is used to switch between expert mode, in which all settings are available, and simple mode, in which only the following menus are available:

- 1. Measurement values
- 2. Statistics
- 4.3 Tset
- 4.4.1 Circulation mode
- 4.4.5 Circ. Periods
- 4.4.6. Tap support
- 6.10 Time and Date
- 7. Menu lock without 7.1
- 9. Language

Service values

8. - Service values

8.2. Hot water 45°C

83. Circulation 43 °C

8.4. Cold water 12 °C

The menu "8. Service values" can be used for remote diagnosis by a specialist or the manufacturer in the event of an error, etc.

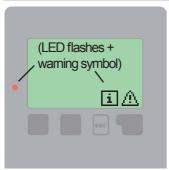
Enter the values at the time when the error occurs e.g. in the table.

The menu can be closed at any time by pressing "esc".

8.1.	
82.	
8.3.	
8.4.	
8.5.	
8.6.	
8.7.	
8.8.	
89.	
&10 .	
&11 .	
812	
8.13.	
8.14.	
8.15.	
8.16.	
8.17.	
8.18	
819	
8.20 .	
8.21.	
8.22	
8.23.	
8.24.	
8.25.	
8.26.	
8.27.	
8.28.	
8.29.	
830.	

8.31.	
8.32	
8.33.	
8.34.	
835	
836	
8.37.	
838	
839.	
8.40.	
8.41.	
8.42	
8.43.	
8.44.	
8.45.	
8.46.	
8.47.	
8.48.	
8.49.	
850.	
& S1.	
8.52	
8.53.	
8.54.	
8.55.	
8.56.	
8.57.	
8.58.	
8.59.	
860.	

Language


9. - Language

Menu "9. Language" can be used to select the language for the menu guidance. This is queried automatically during initial commissioning. The choice of languages may differ, however, depending on the device design. Language selection is not available in every device design!

Malfunctions

Z.1 Malfunctions with error messages

If the controller detects a malfunction, the red light flashes and the warning symbol also appears in the display. If the error is no longer present, the warning symbol changes to an info symbol and the red light no longer flashes.

To obtain more detailed information on the error, press the key under the warning or info symbol.

Do not try to deal with this yourself.

Consult a specialist in the event of an error!

Possible error messages:

Notes for the specialist:

Sensor x defective

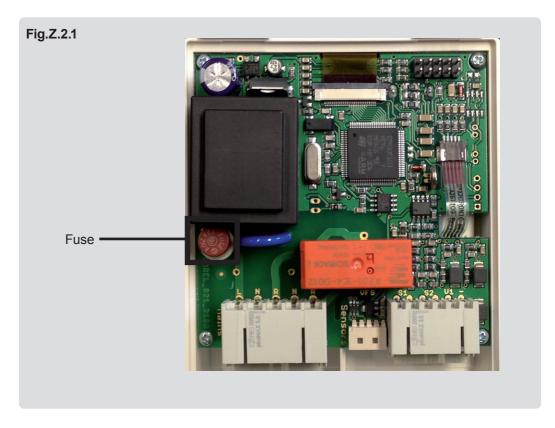
Means that either the sensor, the sensor input at the controller or the connecting cable is/was defective. (Resistance table on page 5)

Time&date

This display appears automatically after a mains failure because the time&date have to be checked, and reset if necessary.

Malfunctions

Z.2 Replacing the fuse


Repairs and maintenance may only be performed by a specialist. Before working on the unit, switch off the power supply and secure it against being switched on again! Check for the absence of power!

Only use the supplied spare fuse or a fuse of the same design with the following specifications: T2A 250V

If the mains voltage is switched on and the controller still does not function or display anything, then the internal device fuse may be defective. In that case, open the device as described under C.1, remove the old fuse and check it.

Exchange the defective fuse for a new one, locate the external source of the error (e.g. pump) and exchange it. Then first recommission the controller and check the function of the switch outputs in manual mode as described under 3.2.

Maintenance

Z.3. Maintenance

In the course of the general annual maintenance of your heating system you should also have the functions of the controller checked by a specialist and have the settings optimised if necessary.

Performing maintenance:

- Check the date and time
- Assess/check plausibility of analyses sell also "2.1. Operating hours" on page 18
- Check the error memory see also "2.4. Error messages" on page 18
- Verify/check plausibility of the current measurement values see also "1. - Measurement values" on page 17
- Check the switch outputs/consumers in manual mode see also "3.2. Manual" on page 19
- Poss. optimise the parameter settings

Hydraulic variant set:					
Commissioned on:					
Commissioned by:					
Notes:					

Final declaration:

Although these instructions have been created with the greatest possible care, the possibility of incorrect or incomplete information cannot be excluded. Subject as a basic principle to errors and technical changes.